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1 Introduction

This paper specifies the operations for inner addition and subtraction over
intervals for the forthcoming IEEE interval standard [1].

These operations can be used e. g. for convenient presentation of the
solutions of certain interval algebraic equations. For example the inner dif-
ference of the intervals A,B is the solution of the equation B +X = A when
this solution exists (i. e. when width(A) ≤ width(B)), or is the solution of
the equation A − X = B when the solution exists (i. e. when width(A) ≥
width(B)). Many applications are related to ranges of monotone functions
or the control of accuracy of interval-arithmetic computational results. Some
of these applications are briefly outlined in Section 3.

2 Inner addition and subtraction over inter-

vals

In real interval-arithmetic inner addition and inner subtraction over two in-
tervals A = [a, a], B = [b, b] ∈ IR are defined as:

A +− B =

{
[a + b, a + b], if w(A) ≥ w(B),

[a + b, a + b], otherwise.
(1)

A−− B =

{
[a− b, a− b], if w(A) ≥ w(B),

[a− b, a− b], otherwise.
(2)

where w(A) = a− a is the width of A.

Remark. Note that (1), (2) are always defined and thus they are “opera-
tions” in algebraic sense (and not partial operations).
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Inner addition and inner subtraction are related by A+−B = A−− (−B),
A−− B = A +− (−B), where −B = (−1) ∗B.

In accordance to Motion 5 [6] outward digital roundings shall be available
for the above operations, that is: ♦(A +− B), ♦(A−− B).

Remark. The outwardly rounded inner operations ♦(A+−B), ♦(A−−B)
can be defined in the spirit of [43], section 5.6(3), as follows:

Inner operations --- outward rounding. There is an operation

innerAdditionOut(xx,yy) that returns for any two intervals xx=[l,u]

and yy=[l′,u′] the tightest interval containing (the points) l+u′

and u+l′.
There is an operation innerSubtractionOut(xx,yy) that returns

for any two intervals xx=[l,u] and yy=[l′,u′] the tightest interval

containing (the points) l-l′ and u-u′.

Remark. Exceptional situations, such as ∞−∞ will be treated in accor-
dance with Motion 8 semantics.

Remark. Another type of digital roundings (named inward roundings)
will be the subject of a future motion.

3 Rationale

In this section we consider two aspects on inner operations: the algebraic
one and one for the presentation of functional ranges and computation with
such ranges.

The operations for inner addition and subtraction over intervals are men-
tioned in [43], see p. 37, Section 5.6.(3). Both operations have been used in
numerous applications, see e. g. [7]–[40].

3.1 Algebraic properties of inner operations

Usually Hukuhara difference [5] is defined in the set of convex bodies K as
follows: Given any two sets A,B ∈ K, if there exists a set X ∈ K satisfying
A = B + X, then X = A ª B is called the Hukuhara difference of the sets
A and B. The Hukuhara difference plays an important role in the theory of
convex bodies [45].
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The Hukuhara difference can be symbolically expressed as follows:

AªB = X ⇐⇒ A + X = B. (3)

Formula (3) shows that Hukuhara difference is the solution X of A+X =
B (whenever existing).

In the special case of one-dimensional intervals A = [a, a], B = [b, b] ∈ IR
the Hukuhara difference can be written as:

AªB =

{
[a− b, a− b], if w(A) ≥ w(B),
not defined, otherwise,

(4)

wherein w(A) = a− a is the width of A.

Remark. Note that AªB is not an operation in the algebraic sense, but
only a partial operation.

The inner operations for addition/subtraction of (one-dimensional) in-
tervals from the present motion (1), (2) can be introduced using a similar
“algebraic approach”. Thus the inner difference A−−B, A,B ∈ I(R), is the
solution Z of a “linear” equation either of the type B + Z = A, or of the
type A − Z = B (depending on which one is solvable; one of the equations
is always solvable).

For more clarity we shall next denote multiplication by −1 as ¬A = (−1)∗
A = [−a,−a], resp. subtraction of intervals A,B as A ¬ B = A + (¬B) =
[a− b, a− b].

Remark. Introducing the operation of inner subtraction makes notation
A− B vague — is this outer (standard) subtraction or inner? Therefore we
shall avoid in the sequel the dubious notation A−B using A ¬ B or A−+ B
for the outer (standard) subtraction and A−− B for the inner one.

Symbolically we have

A−− B = X ⇐⇒
{

B + X = A, if solutionXexists;
A ¬ X = B, if solutionXexists.

(5)

An equivalent way to express the above is:
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A−− B =

{
Y |B+Y =A, if w(B) ≤ w(A);
X|A ¬ X=B, if w(A) ≤ w(B).

(6)

Similarly inner addition can be introduced:

A +− B = X ⇐⇒
{ ¬B + X = A, if solutionXexists;
¬A + X = B, if solutionXexists,

(7)

which can be alternatively written as:

A +− B =

{
Y |¬B+Y =A, if w(B) ≤ w(A),
X|¬A+X=B, if w(A) ≤ w(B).

(8)

Note that w(¬B) = w(B) so that the inequalities w(B) ≤ w(A) and
w(¬B) ≤ w(A) are equivalent. Inner addition and inner subtraction are
related by A +− B = A−− (¬B), A−− B = A +− (¬B) as this easily follows
from (6), (8).

Notation. For A,B ∈ IR denote A++ B = A+B, A−+ B = A ¬ B =
A + (¬B). Then using the binary symbol σ ∈ {+,−} we can write A +σ B,
A−σ B.

Remark. In what follows we adopt the end-point notation A = [a−, a+],
B = [b−, b+] ∈ IR, which turns out to be very convenient when studying the
algebraic properties of inner operations.

Besides the sign functional σ we use φ : IR
⊗
IR→ {+,−}, defined as

φ(A,B) =

{
+, if w(A) ≥ w(B);
−, otherwise,

For A = [a−, a+] ∈ IR we can define A +− B using φ by:

A +− B = [a−γ + bγ, aγ + b−γ], γ = φ(A,B), (9)

We recall the “join” operation (denoted symbolically “∨”) in the special
case of real numbers. For α, β ∈ R, the join α ∨ β ∈ R is either the interval
[α, β] ∈ IR or the interval [β, α] ∈ IR depending on whether α ≤ β or α ≥ β.
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Using join we can write

A +− B = [(a− + b+) ∨ (a+ + b−)].

The operation A−− B = A +− (¬B) can be written

A−− B = [a−γ − b−γ, aγ − bγ], γ = φ(A,B). (10)

Using the operation “join”, the above can be written

A−− B = [(a− − b−) ∨ (a+ − b+)].

The two operations for addition +, +− can be considered as one oper-
ation in two modes (directions) to be denoted “+θ”, wherein θ ∈ {+,−},
and referred to as “directed addition”. For θ = + the operation +θ is the
standard (positively directed) addition, “+”, whereas for θ = −, +θ is the
nonstandard (negatively directed) addition, “+−”. The directed addition +θ

can be expressed:

A +θ B = [(a− + b−θ) ∨ (a+ + bθ)].

Rules for algebraic transformations. Below we present some prop-
erties of directed/inner addition.

Commutativity of inner addition. For A,B ∈ IR we have A +− B =
B +− A.

Conditional associativity of directed addition. Directed addition is condi-
tionally associative in the sense that for each triple A,B,C ∈ I(R) and each
pair θ1, θ2 ∈ {+,−}, there exist another pair θ3, θ4 ∈ {+,−}, such that

(A +θ1 B) +θ2 C = A +θ3 (B +θ4 C).

Moreover, θ3, θ4 are simple functions of the widths of the intervals and can
be easily computed.

X = [0, 0] = 0 is the unique neutral element with respect to inner addition
+−, that is for every A ∈ IR

A = X +− A = A +− X ⇐⇒ X = [0, 0].
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Note that A +− (¬A) = 0, thus every element A ∈ IR has unique inverse
w. r. t. “+−”, and this is the element ¬A = [−a+,−a−].

Outer addition is commutative and associative but has no inverse, whereas
inner addition is commutative, not associative and has inverse. Considered
together, as one “directed” operation in two different modes, we can say that
this directed operation is conditionally acossiative. So both modes comple-
ment each other.

For p ∈ R define σ(p) = {+, if p ≥ 0; −, if p < 0}.
Quasidistributive law: For A ∈ IR, p, q ∈ R and ∗ multiplication by

scalars

(p + q) ∗ A = p ∗ A +σ(p)σ(q) q ∗ A, (11)

Remark. Note the equality relation in (11); recall that the corresponding
law formulated in classic (outer) operations only gives inclusion: (p+q)∗C ⊆
p ∗ C + q ∗ C, whereas now we have (p + q) ∗ C = p ∗ C +σ(pq) q ∗ C.

3.2 Inner operations and monotone functions

Let X ∈ IR and f, g be two continuous functions defined on x ∈ X.
For the functional ranges f(X) = {f(x) | x ∈ X}, g(X) = {g(x) | x ∈

X} we have (f + g)(X) ⊆ f(X) + g(X).

Moreover, we have (f + g)(X) = f(X) + g(X), if f, g equally monotone
and this is true for arbitrary equally monotone functions f, g.

This observation can be used to define the operation addition of two
intervals A,B ∈ IR as follows:

Definition. Given two intervals A,B ∈ IR take any two equally monotone
functions f, g defined on X, s. t. f(X) = A, g(X) = B. We then define the
sum of the intervals A,B ∈ IR as A + B = (f + g)(X).

The above definition is correct, since (f + g)(X) depends only on the
choice of A, B.

Example 1. If X = [0, 1], A = [a−, a+], B = [b−, b+], we can choose
the functions f, g to be the monotone increasing (isotone) linear functions
defined on [0, 1] by:
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f+(ξ) = (1− ξ)a− + ξa+, g+(ξ) = (1− ξ)b− + ξb+,

or the monotone decreasing (antitone) linear functions defined on [0, 1] as:

f−(ξ) = (1− ξ)a+ + ξa−, g−(ξ) = (1− ξ)b+ + ξb−.

Remark. In practice, for smooth functions f, g and for small interval
argument X in “half” of the situations f, g are equally monotone functions
and we have A + B = (f + g)(X) (showing the usefulness of the operation
interval addition). Now the question is what can be done in the other “half”
of the cases when f, g are two differently monotone functions. In this situation
denoting f(X) = A, g(X) = B, we only have (f + g)(X) ⊆ f(X) + g(X) =
A+B, but the inclusion can be “rough”. Typical example is f(x) = x, g(x) =
−x, then we have 0 = {x + (−x) | x ∈ X} ⊆ X + (−X) = X − X, with
ω(X −X) = 2ω(X), showing how rough an inclusion can be.

Following arguments similar to the ones for the above definition of addi-
tion A + B = (f + g)(X) we can proceed as follows.

Definition. Given A,B ∈ IR, take any two differently monotone functions
f, g s. t. f(X) = A, g(X) = B and f + g is monotone. Define “inner
addition” by means of A +− B = (f + g)(X).

Obviously, (f + g)(X) depends only on the choice of A,B so the above
definition is correct.

The above can be summarized as follows.

Denote CM(T ) the set of continuous monotone functions on T ∈ IR.
For f ∈ CM(T ) denote τf = τ(f ; T ) ∈ {+,−}, where

τ(f ; T ) =

{
+, if f is isotone in T ;
−, iff is antitone in T.

For f, g ∈ CM(T ), the equality τf = τg means, that both f, g are isotone
or both are antitone in T ; τf = −τg means that one function is isotone and
the other is antitone.

Proposition 1. ([33], [34]) Let f, g ∈ CM(T ). Then for every X ⊆ T we
have:

i) f + g ∈ CM(T ) implies (f + g)(X) = f(X) +τf τg g(X),
ii) f − g ∈ CM(T ) implies (f − g)(X) = f(X)−−τf τg g(X).

7



The application of the above proposition can be illustrated by means of
the following examples [8].

Example 2. Consider the problem of finding exact interval expressions
for Taylor series of elementary functions, such as exp, ln, cos, sin, whenever
X belongs to some interval within certain domain. For X ≥ 0 we have, using
familiar interval addition: exp(X) = 1 + X/1! + X2/2! + X3/3! + X4/4! + ....

However, this expression gives overestimation for other values of X. In
such cases inner operations can be helpful. Applying the monotonicity Propo-
sition 1 for ranges of X such that −1 ≤ X < 0, we obtain:

exp(X) = 1 + X/1! +− X2/2! + X3/3! +− X4/4! + ... , −1 ≤ X < 0.

Example 3. Similarly, using familiar interval addition/subtraction, we
have ln(1 + X) = X −X2/2 + X3/3−X4/4 + ..., 0 ≤ X ≤ 1.

However, for −1 < X ≤ 0 the above formula is not exact. Based on
Proposition 1, using inner subtraction we obtain:

ln(1 + X) = X −− X2/2 + X3/3−− X4/4 + ..., −1 < X ≤ 0.

The order of the execution of operations in the above examples is from
left to right. It is assumed that the ranges Xn are exact in the specified
ranges for X.

A computer algebra system having additional information for the domains
of the interval arguments can perform automatically the resulting expres-
sions.

When dealing with complicated expressions, the process of finding nar-
row/exact interval bounds can be done automatically by means of Propo-
sition 1. The automatization process has been nicely described and used
in [9] (there inner operations for multiplication/division are used as well).
The process is based on the automatic check of the monotonicity of the
(sub)expressions involved, starting from the most inner subexpressions, sim-
ilarly to the process of automatic differentiation.

Other applications known to us (listed incompletely). Baker Kearfott
has a Fortran implementation of inner interval addition/subtraction [4]. A.
Neumeier uses inner interval operations for efficient constraint propagation
in solving global optimization problems, in COCONUT and in GloptLab,
see formulae (25), (26) and Proposition 14.2 of [41], see also [43], section
5.6(3). R. Alt, J.-L. Lamotte and V. Kreinovich make use of inner interval
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arithmetic in [2]. L. Stefanini uses inner operation in the context of fuzzy
set theory [46]. V. Nesterov makes use of inner operations in [39], [40].

Remark. Many applications make use of variants of inner operations, e. g.
one variant based on Hukuhara difference (that is, partial operation), such
as [43], section 5.6(3), and another one leading to nonstandard (Kaucher)
intervals, such as formulae (25), (26) of [41].

Remark. A correspondence between inner operations and the exist/forall
modes in modal interval arithmetic has been studied, e. g. in [3], [35].

4 Mid-rad presentation

The mid-rad presentation of intervals adds important further insight to the
application of inner interval-arithmetic operations.

Denoting the midpoint and the radius of A = [a−, a+] ∈ IR resp. by a′

and a′′, we have

a′ = (a− + a+)/2, a′′ = (a+ − a−)/2.

The form A = (a′; a′′) is called mid-rad presentation. Conversely we have

a− = a′ − a′′, a+ = a′ + a′′.

For (auter) addition and subtraction we have

A + B = (a′ + b′; a′′ + b′′),

A ¬ B = (a′ − b′; a′′ + b′′).

For inner addition and subtraction we have

A +− B = (a′ + b′; |a′′ − b′′|),
A−− B = (a′ − b′; |a′′ − b′′|).

Remark. The above formulae illuminate the interval operations when
radii are small, which corresponds to the “approximate number” aspect of
intervals. Outer and inner operations have same midpoints, which means
that the main value is same; however, inner operations have smaller radii,
that is error bounds. Thus mid-rad presentations help us in understanding
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the idea of “interval arithmetic operations in two modes”. Considered as
approximate numbers, inner and outer operations produce same main values
but with different error bounds. In particular inner operations can be used
to treat the so-called “dependency problem”.

Using multiplication by−1 outer/inner addition is representable by means
of outer/inner subtraction, that is A +θ B = A−θ (¬B), θ = ±.

Multiplication by −1 in mid-rad presentation is

¬A = (−1) ∗ A = (−1) ∗ (a′; a′′) = (a′; |a′′|), A ∈ IR.

More generally, we have for γ ∈ R

γ ∗ A = γ ∗ (a′; a′′) = (γa′; |γ|a′′). (12)

Recall that multiplication by scalars in end-point presentation has the
form:

γ ∗ A =

{
[γa−, γa+], if γ ≥ 0,

[γa+, γa−], if γ < 0.
(13)

Remark. Note that the components midpoint/radius in (12) are “sepa-
rated”, which is not the case of multiplication by scalars in end-point pre-
sentation (13). Thus mid-rad presentation allows to reduce certain classes of
linear interval problems to linear numerical problems [38] .

5 Relation to Kaucher/modal arithmetic

To illuminate the relation between inner interval operations and the oper-
ations in Kaucher/modal arithmetic we shall consiser an analogy from real
arithmetic [47].

As we know the introduction of negative numbers is a rather new event in
the long history of mathematics. As G. Birkhoff notes in [48]: We should not
forget that zero and negative numbers were among the last to be accepted.
The primary use of negative numbers (and zero) is to make the equation
A + X = B always solvable, i. e. to make the additive monoid (R+, +) of
nonnegative numbers a group. The isomorphic extension (embedding) of a
commutative monoid into a group is now a common mathematical tool [54].
However, before that mathematicians like Diophantus from Alexandria also
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used negative numbers in a primitive way, similar to the way now this is done
in interval analysis.

To give a brief idea of inner interval operations it is instructive to com-
pare the algebraic properties of standard intervals to those of nonnegative
numbers. Recall the useful operation “ª” in the additive semigroup (R+, +)
of nonnegative numbers: AªB is the solution X of A + X = B, if X exists,
and is the solution X of B +X = A, if X exists. Of course AªB = |A−B|,
but we do not have negative numbers −B in (R+, +), and hence we cannot
write AªB = A + (−B).

The inner operations for standard intervals can be defined similarly.
According to formula (7) the inner difference A −− B is the solution

X of B + X = A, if such a solution X exists, and is the solution X of
A + (−1) ∗X = B provided X exists, if both solutions exist, they coincide.

A commutative semigroup can be embedded in a group if and only if it
is cancellative [55]. A commutative monoid (M, +) is cancellative and thus
embeddable in a group. We recall that a commutative monoid (M,+) is
cancellative if for all a, b, c ∈ M , a + b = a + c always implies b = c.

The algebraic structure (IR, +) of (standard) intervals with addition is an
commutative monoid, and thus embeddable in a group; this has been noticed
already by M. Warmus [53] and T. Sunaga [52], [50]. The new elements in-
volved are the so-called improper intervals which together with the standard
ones constitute the group of generalized (modal/Kaucher) intervals.

The basic operations (addition and multiplication) and relation inclu-
sion have to be isomorphically extended for the group elements, preserving
the important property of inclusion isotonicity. An isomorphic extension of
multiplication (addition is trivial) from the semigroup IR to the group of
modal intervals based on set-theoretic arguments (i.e. preserving inclusion
isotonicity) has been correctly done by H.-J. Ortolf [51] and E. Kaucher [49].

More about the relation between inner interval operations and modal/Kaucher
intervals can be found in [35].
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